
 

 

  
Abstract—Critical illness insurance (CII) or critical illness cover is 
an insurance product, where the insurer is contracted to typically 
make a lump sum cash payment if the policyholder is diagnosed with 
one of the critical illnesses listed in the insurance policy. The 
schedule of insured illnesses varies between insurance companies. 
The basis for the valuation of each insurance product, not excluding 
CII products, is the knowledge of probability of insurance event 
specified in the policy. This article aims to explain and apply 
methods of classical and Bayesian statistical inference how to 
estimate the probability of critical event diagnoses in the Slovak 
insurance companies, specifically for the men and women and for 
various age groups. The estimated event probabilities are 
subsequently used for setting risk premiums in the homogeneous 
groups by sex and age. The individual risk model has been used for 
calculation of premiums. Data submitted by the Decree No. 20/2008 
to the National Bank of Slovakia from Slovak insurance companies 
giving exposure to the critical illness risk have been used for all 
calculations in the article. 
 

Keywords—Bayesian estimation, binomial/beta model, event 
probability, individual risk model, premium. 
 

I. INTRODUCTION 
HE critical illness insurance (CII) first came to the scene 
in South Africa early in the 1980s under the name of 
Dread Disease Insurance. However, before this, in the 

USA, Japan and Israel some life insurance policies were 
extended to cover cancer. CII has been very popular in the 
UK. Although CII policies have been issued since the 1980s in 
the UK, the number of policies increased dramatically in the 
early 1990s. Currently critical illness insurance is common 
product of many insurance companies around the world, 
although these insurance products vary in number and set up of 
diseases, they cover [1]. 

CII covers pay an insurance benefit if the insured person 
suffers a serious condition, depending on the definitions 
stipulated in the policy wording, such as cancer, heart attack, 
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stroke, coronary artery (bypass) surgery or kidney failure. The 
number of diseases covered varies considerably depending on 
the market and provider concerned. 

This kind of insurance products covers against the financial 
consequences of the serious condition. People affected are 
given financial support to enable them to better manage their 
changed circumstances of life.  

Insurance products differ in their specifications and in 
premiums. In their creation there is necessary knowledge about 
the probabilities of claims that are covered by critical illness 
policy. These probabilities need to know for different 
homogeneous groups of clients. 

Because critical illness cover only indemnifies the insured 
when a dread disease is diagnosed, number of CII events in 
homogeneous group of n insured persons has binomial 
distribution Bi(n;θ) with parameters n and θ, where θ is 
probability of event, which is which the diagnosis is a critical 
event under the policy conditions. 

Article investigates the classical and the Bayesian estimators 
of the parameter θ of binomial distribution using quadratic loss 
function for homogeneous groups of insured persons and 
presents using of these estimators in premium calculation.  

II. THE POINT ESTIMATION OF EVENT PROBABILITY 
The classical approach to point estimation treats parameters 

as something fixed but unknown. The method of maximum 
likelihood provides estimators which are usually quite 
satisfactory. They have the desirable properties of being 
consistent, asymptotically efficient for large samples under 
quite general conditions. So the maximum likelihood method 
is the most frequently used. The principle of maximum 
likelihood tells us that we should use as our estimate that value 
which maximises the likelihood of the observed event [2], [3].  

The essential difference in the Bayesian approach to 
inference is that parameters are treated as random variables 
and therefore they have probability distributions.  

Suppose ),...,,( 21 nxxxx =  is a random sample from a 
population specified by density function ( )θ/xf  and it is 
required to estimate parameterθ . By [4], [5], [6] prior 
information about θ  that we have before collection of any 
data is the prior distribution ( )θf  which is probability density 
function or probability mass function. The information about 
θ  provided by the sample data ),...,,( 21 nxxxx =  is contained 
in the likelihood 
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Bayes theorem combines this information with the 

information contained in ( )θf  in the form 
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which determines the posterior distribution. A useful way of 
expressing the posterior density is to use proportionality. We 
can write 
 

( ) ( ) ( )θθθ fxfxf // ∝                  (3) 

 
or simply posterior ∝  likelihood * prior. 

The posterior distribution contains all available information 
about θ  and therefore should be used for making decisions, 
estimates or inferences. The following procedure for Bayesian 
estimation of the binomial parameter θ  is explained for 
example in [7]–[11]. 

For estimation of a binomial probability θ  from a single 
observation X with the prior distribution of θ  being beta with 
parameters α and β, we will investigate the form of the 
posterior distribution of θ . Prior beta density function by 
assumption and omitting the constant is 

 
( ) ( )        ,1 11 −− −∝ βα θθθf 10 << θ

.     
      (4) 

 
Note that the uniform distribution on (0, 1) is a special case 

of the beta distribution with α = 1 and β = 1. This corresponds 
to the non-informative case. Omitting the constant likelihood is 
given by  

 
( ) ( )       ,1/ xnxxf −−∝ θθθ nx ,...,1,0=            (5) 

 
where n is number of independent trials (in our case number of 
policies) and x is number of events. 

By (3) we get the posterior density of θ in the form 
 

( ) ( ) ( ) ( ) 1111 111/ −−+−+−−− −=−−∝ xnxxnxxf βαβα θθθθθθθ   (6) 
 
Apart of the appropriate constant it is the posterior beta 

density function of θ  with new parameters  
 

x+= αα´                     (7) 
xn −+= ββ '                     (8) 

 
The Bayesian estimator of θ , given the sample data 

),...,,( 21 nxxxx =  is the loss function )(xg , which minimizes 
the expected loss with respect to the posterior distribution 
[10].  

There is one very commonly used loss function, called 
quadratic or squared loss. The quadratic loss is defined by  

 
( )( ) ( )[ ]2; θθ −= xgxgL               (9) 

 
By minimizing the quadratic loss the Bayesian estimator of 

θ  can be expressed as the mean of this posterior distribution 
as follows: 
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We can rewrite the Bayesian estimator of θ in the form of 

credibility formula by [1], [12] or [13]: 
 

( ) µθ ⋅−+⋅= Z
n
xZB 1                     (11) 

 
where factor credibility Z can be expressed as 
 

n
nZ

++
=
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and μ is the mean of the prior beta distribution expressed as 
 

βα
αµ
+

=                     (13) 

 
We note that as n (number of insurance policies) increases, 

the weight Z attaching to the data-based estimator increases 
and the weight attaching to the prior mean correspondingly 
decreases. 

In practice may be some situations in which there is no prior 
knowledge. Then we use a non-informative prior. For example 
if θ  is a binomial probability and we have no prior 
information at all about θ , then a prior distribution which is 
uniform on interval (0, 1) would seem appropriate.  

In case this case the prior distribution is the beta distribution 
with parameters α = 1, β = 1 and it leads to the prior estimate 
θ  = 0.5.  

If parameter θ  is probability of diagnosis critical illness, 
this prior estimator fortunately highly overstates real value of 
this probability. 

To eliminate this drawback, instead of interval (0, 1) for 
prior estimate of probability θ  need to propose more realistic 
interval in which we assume a uniform prior distribution. Such 
interval and the algorithm for its use in Bayesian estimation of 
the binomial probability of random event θ  was published in 
articles [14] and [11]. The proposed procedure is as follows: 

 We set the interval ( )maxmin ,θθ , in which we suppose to get 
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a better estimate. 
 We denote by the symbol s the mean of prior beta 

distribution, which is the centre of this interval:  
 

2
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We mark as 0θ  the more distant boundary from the value of 

0.5 of the interval ( )maxmin ,θθ . 

 Calculate the allowable error as shB −= 0θ . 
 We calculate q according to the formula  
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We estimate the parameters α, β of the prior beta 

distribution as follows: 
 

qs=α , qsq −=β .               (15) 
 

III. THE INDIVIDUAL RISK MODEL 
One of the key quantities of interest to an insurance 

company is the total amount to be paid out on a particular 
portfolio of policies over a fixed time interval, such as an 
accounting period.  

One short term model is the individual risk model, where we 
consider the portfolio to consist of a fixed number, n, of 
independent policies, or individual risks. We will model 
aggregate claims from the portfolio as the sum of claims from 
individual risks, hence the name “individual risk model“.  

Another short term model is the collective risk model [4], 
[7], [15], [16], [18]. Here we model successive claims arising 
from the portfolio as independent, identically distributed 
random variables NXXX ...,,, 21 , and we ignore which policy 
gives rise to which claim. The number of claims in the fixed 
time period is a random variable, N, say, which is assumed to 
be independent of iX . The total claim amount (or aggregate 
claims) is modelled as a random variable given by  

 
NXXXS +++= ...21               (16) 

 
The distribution of S is an example of a compound 

distribution. We will consider aggregate claims when N has 
the binomial distribution, and so S has the compound binomial 
distribution. In this case expressions of mean and variance of S 
are by [4], [15]: 

 
( ) 1mnSE π=                   (17) 

 
( ) 2

1
2

2 mnmnSD ππ −=               (18) 

 
where π is the parameter of binomial distribution of the 
variable N and 1m and 2m are the moments of iX  about zero. 

In individual risk model we denote the aggregate claim from 
the portfolio by nS . We now write 

 
nn YYYS +++= ...21                (19) 

 
where jY  denotes the claim amount under the j-th risk and n 
denotes the number of risks. It is possible that some risks will 
not give rise to claims. Thus, some of the observed values 
of jY , nj ...,,2,1=  may be 0. For each risk, we make the 
following assumptions: 
1) the number of claims from the j-th risk, jN , is either 0 or 1, 
2) the probability of a claim from the j-th risk is jq . 

We assume a situation where there is a maximum of one 
claim from each policy. This case includes also risk of critical 
illness diagnosis in one-year term policies.  

If a claim occurs under the j-th risk, we denote the claim 
amount by the random variable jX . Let jj xF µ),(  a 2

jσ  

denote the distribution function, mean and variance of jX  
respectively.  

Assumptions 1) and 2) say that );1( jj qBiN ≈ . Thus, the 
distribution of jY  is compound binomial, with individual 
claims distributed as jX . We can immediately write down 
from (17) and (18) that  

 
( ) jjj qYE µ=                   (20) 
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Than nS  is the sum of n independent compound binomial 

distributed random variables and it is easy to find the mean 
and variance of nS : 
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For calculation of )( nSD we have used the assumption that 

individual risks are independent.  
Because of jY  are generally not identically distributed, 

there is no general result that tells us the distribution of such 
a sum. We can state this distribution only when the compound 
binomial variables are identically distributed, as well as 
independent.  
 In a special case, when jY , nj ...,,2,1=  is a sequence of 
identically distributed, as well as independent random 
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variables, then by central limit theorem we can approximate 
distribution of nS  by normal distribution. 

Then we set the risk premium as the 95. percentile of the 
normal distribution with parameters  

 
( )nSE=µ , ( )nSD=2σ               (24) 

 

IV. SOURCE OF DATA  
Let θ is unknown probability of diagnosis a critical illness. 

To estimate this probability for Slovak insurance market we 
have found the the data about the number of claims “x” and 
risk exposure “n” in the years 1999-2010 from dataset of 
National Bank of Slovakia [17].  

Data covering the period 1999-2010 were submitted to the 
National Bank of Slovakia based its Decree No. 20/2008 on 
submitting of actuarial data and statistical data of insurance 
company and branch of a foreign insurance company, on the 
basis of which it started to gather statistical data about insured 
people from insurance undertakings in 2009. The data were 
gathered in classification according to gender, age and thirteen 
insurance risks. Among them there are also the critical illness 
risks. 

 

V. RESULTS AND DISCUSSION 
Let θ  is unknown probability of diagnoses some critical 

illness. To estimate this probability we have found the data 
about the number of claims x and risk exposure n in the years 
1999-2010 from dataset of National Bank of Slovakia [17].  

The random variable X – the number of claims during the 
year is binomial distributed and maximum likelihood 
estimations we get simply by formula  

 

n
xest =θ                     (25) 

 
Maximum likelihood estimators of the probabilities of 

critical illness diagnosis of insured men and women in the 
Slovak Republic based on data of National Bank of Slovakia 
[17] present the Figures 1 and 2. 

 
Fig. 1 Maximum likelihood estimates of probabilities of critical 

illness diagnosis for men by four age categories  
 
The small number of insured persons in the early observed 

years is the cause of large variability in the estimates. A small 
numbers of insured men and women in the age group over 50 
years are the cause of large fluctuations in θ estimates by the 
relative number of claims. In Figures 1 and 2 we can observe 
significant differences in the relative numbers of diagnoses of 
CI disease in different age categories. In principle, these 
relative numbers grow with age. While in groups of women 
under 30 years and of women in the age range 31-40 years are 
large differences in estimated probabilities especially in the 
first years of time series, the relative numbers of diseases in 
the same age groups of men are almost identical. Positive 
feature is the decreasing tendency of occurrence of the disease 
among women aged 41-50, but mainly in the age range 31-40 
years.  

 

 
Fig. 2 Maximum likelihood estimates of probabilities of critical 

illness diagnosis for women by four age categories  
 
The shortcomings of the maximum likelihood estimates 

of probabilities of critical illness diagnosis in homogeneous 
groups of insured persons by age and sex, mainly due to the 
small number of data, we try to remove using Bayesian 
estimations. 

According to the publications [19], [20] we selected the 
intervals ( )maxmin ,θθ  for prior estimation of θ for each 
homogeneous group of policies by sex and age categories. For 
example it is interval (0.000001; 0.002) for prior estimate of 
parameter θ for group of men less than 30 years. Following the 
procedure described above by [14] we have obtained the prior 
estimate of the probability θ of critical illness diagnosis in the 
year 1999. In calculation by (14) we used the number of the 
population in Slovak republic in the year 1998.  

Procedure for obtaining the parameters of prior beta 
distribution for category of men less than 30 years is as 
follows: 

 
1. 002.0  ;000001.0 maxmin == θθ  

2. 0010005.0
2

002.0000001.0
=

+
=s  
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3. 000001.00 =θ  

4. 0009995.00010005.0000001.0 =−=Bh  

5. 
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001999.2    

000001.01000001.00009995.05390866
000001.01000001.053908662

2

≅

=
−×−×
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6. 002003.0001001.0001999.2 ≅×≅α  

   999997.1001001.0001999.2001999.2 ≅×−≅β  
 

The parameters ,α  and 'β of the posterior gamma 
distribution for each of the subsequent years 2000-2010 we 
have estimated by relations (7) and (8), using as the prior 
parameters βα ,  their Bayesian estimates from the previous 
year.  
 
Table I Updated Bayesian estimation of critical illness 

probabilities for men less than or 30 years 

Year n x x/n α β θB 

1999 103.5 0 0.000000 0.002003 1.999997 0.001001 

2000 1054.2 0 0.000000 0.002003 105.5615 0.000019 

2001 4014.7 0 0.000000 0.002003 1159.827 0.000002 

2002 7671.3 6 0.000782 0.002003 5174.601 0.000001 

2003 11868.8 10 0.000843 6.002003 12839.94 0.000467 

2004 16393.0 9 0.000549 16.00200 24698.81 0.000648 

2005 21749.1 7 0.000322 25.00200 41082.88 0.000608 

2006 28121.6 9 0.000320 32.00200 62825.06 0.000509 

2007 34005.4 13 0.000382 41.00200 90937.7 0.000451 

2008 40944.8 10 0.000244 54.00200 124930.2 0.000432 

2009 48404.2 18 0.000372 64.00200 165865 0.000386 

2010 48766.7 27 0.000554 82.00200 214251.2 0.000383 

2011       109.0020 262991 0.000414 
Source: own calculations based on data with prior Be(0.002003; 1.999997) 

 

 
Fig. 3 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for men less then or 30 
 
Permanently updated parameters of the posterior beta 

distribution in years 2000-2010 we have used for permanently 
updated Bayesian estimates of the probability of diagnosis of a 
critical illness according to the formula (10) by minimizing the 
quadratic loss.  

The results of the procedure for men under or 30 years are 
summarized in Table I and the analogous results for women in 
the same age category contain Table II. 

 
Table II Updated Bayesian estimation of critical illness 

probabilities for women less than or 30 years 

Year n x x/n α β θB 

1999 2913.2 0 0.000000 0.002 1.999997 0.001001 

2000 4922.7 1 0.000203 0.002 2915.16 0.000001 

2001 9307.5 4 0.000430 1.002 7836.84 0.000128 

2002 14550.7 3 0.000206 5.002 17140.30 0.000292 

2003 22121.6 1 0.000045 8.002 31687.96 0.000252 

2004 30177.7 5 0.000166 9.002 53808.57 0.000167 

2005 37158.4 3 0.000081 14.002 83981.30 0.000167 

2006 43746.1 5 0.000114 17.002 121136.66 0.000140 

2007 49518.5 11 0.000222 22.002 164877.73 0.000133 

2008 56247.1 15 0.000267 33.002 214385.27 0.000154 

2009 51410.2 25 0.000486 48.002 270617.42 0.000177 

2010 54942.8 33 0.000601 73.002 322002.64 0.000227 

2011       106.002 376912.48 0.000281 
Source: own calculations based on data with prior Be(0.002003; 1.999997) 

 
 

 
Fig. 4 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for women less then or 30 
 

Maximum likelihood estimates x/n and Bayesian estimates 
Bθ  from Table I in successive years 1999-2011 are shown in 

Fig. 3 and from Table II in Fig 4. We can see that the Bayesian 
estimates are not so strong affected by randomness as a 
maximum likelihood estimates, because Bayesian estimates 
contain also a priori information from the previous years. 
Therefore the Bayesian estimates are more suitable for 
actuarial calculations in comparison with maximum likelihood 
estimates. 
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Graphical comparisons of the maximum likelihood and 
Bayesian estimates of the probabilities of a critical illness 
diagnosis for men of other age categories have shown Fig. 5-
Fig. 7.  

 

 
Fig. 5 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for men above 30 and less then or 40 
 

 
Fig. 6 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for men above 40 and less then or 50 
 
 

 
Fig. 7 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for men above 50  
 
 

Analogous comparisons of the maximum likelihood 
estimates by nx  and Bayesian estimates Bθ  of critical illness 
for women of different age groups show the Fig. 8-Fig. 10. 
 
 

 
Fig. 8 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for women above 30 and less then or 40 
 

 
Fig. 9 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for women above 40 and less then or 50 
 
 

 
Fig. 10 Maximum likelihood and Bayesian estimations of critical 

illness probabilities for women above 50  
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Table III Comparison of Bayesian estimations of critical illness 
probabilities for men and women above 30 and less then or 
40 

Year θB - men 31-40 θB - women 31-40 

1999 0.0125500 0.0125500 

2000 0.0001942 0.0028818 

2001 0.0026739 0.0093971 

2002 0.0016243 0.0102383 

2003 0.0013145 0.0104375 

2004 0.0009376 0.0093603 

2005 0.0008324 0.0086142 

2006 0.0008343 0.0077168 

2007 0.0007945 0.0068221 

2008 0.0006159 0.0062170 

2009 0.0005538 0.0054235 

2010 0.0006203 0.0044916 

2011 0.0006675 0.0038288 
Source: own calculations 

 
 

 
Fig. 11 Graphical comparison of Bayesian estimations by sex from 

Table III 
 

As we can see from Table III and Fig. 11 in the age group 
above 30 and less then or 40 the differences between estimated 
probabilities of critical illness are significantly higher in the 
group of insured women in comparison with insured men, 
particularly in the early years of the reference period. Due to 
the decreasing trend in the values of the probability of critical 
disease of women, these differences in the later years of 
monitoring considerably reduced.  

In the age group 41-50 the significant differences of 
estimated probabilities of critical illness for men and women 
have been also gradually reduced in the later years, but the 
reason was not only a decreasing trend of estimated values of 
these probabilities for women, but also the increasing trend for 
men. 

 
 

Table IV Comparison of Bayesian estimations of critical illness 

probabilities for men and women above 40 and less then or 50 
Year θB - men 41-50 θB - women 41-50 

1999 0.0100250 0.0100250 

2000 0.0001202 0.0087878 

2001 0.0000177 0.0069019 

2002 0.0004780 0.0067029 

2003 0.0017865 0.0060282 

2004 0.0019628 0.0060241 

2005 0.0019812 0.0058168 

2006 0.0019820 0.0053119 

2007 0.0021691 0.0049412 

2008 0.0022956 0.0045870 

2009 0.0022079 0.0039653 

2010 0.0024301 0.0035260 

2011 0.0023190 0.0031675 
Source: own calculations 

 

 
Fig. 12 Graphical comparison of Bayesian estimations by sex from 

Table IV 
 
Table V  Comparison of Bayesian estimations of critical illness 

probabilities for men and women above 50 
Year θB - men 51+ θB - women 51+ 
1999 0.0100500 0.0100500 
2000 0.0007401 0.0007991 
2001 0.0001346 0.0001295 
2002 0.0085127 0.0016638 
2003 0.0081667 0.0051759 
2004 0.0064295 0.0056213 
2005 0.0071260 0.0043193 
2006 0.0060941 0.0041738 
2007 0.0054229 0.0042572 
2008 0.0052447 0.0044288 
2009 0.0048335 0.0037823 
2010 0.0054353 0.0037512 
2011 0.0056653 0.0036621 

Source: own calculations 
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Fig. 13 Graphical comparison of Bayesian estimations by sex from 

Table IV 
 
Only in the highest age category of insured persons above 

50 years the estimated probabilities of critical illness there are 
higher for men than for women.  

Bayesian estimates we use to determine the risk premiums 
in homogeneous groups according to age and sex of the 
insured persons. For this aim we need to estimate the number 
of insured persons in 2011 by extrapolation the trend of the 
time series. To determine the trend of the time series of 
insured persons in each of the homogeneous groups in the 
period 1999-2010 we used the statistical package Statgraphics 
Centurion. Procedure Comparison of Alternative Models 
allows to choose the most appropriate trend function and 
procedure Forecast provides predicted value for the coming 
year. The quality of the selected model expresses the R-
squared measure. 

 
Table VI The results of prediction the number of insured persons in 

year 2011 for homogenous group by sex and age 

Group Model Predicted 
Values n2011 

R-
squared 

Men , -30 Square root-Y 55479.50 98.50% 

Men, 31-40 Multipliative 48008.90 99.32% 

Men, 41-50 Multipliative 38774.60 99.35% 

Men, above 50 Multiplicative 15982.10 99.43% 

Women, -30 Double reciprocal 58338.00 98.39% 

Women, 31-40 Square root-Y 63363.90 99.58% 

Women, 41-50 Square root-Y 42272.30 99.15% 

Women, above 50 Multiplicative 20001.80 99.67% 
Source: own calculations 

 
Table VII Risk premiums for homogeneous groups of men by age 

Men ΘB est n2011 E(Yj) D(Yj) 
RP/ 

person 

-30 0.000423 55479.50 468920.92 9374454957 9.36 

31-40 0.000667 72147.20 640869.19 12808828872 14.73 

41-50 0.002319 38774.60 1798335.18 35883298337 51.35 

51+ 0.005681 15982.10 1815894.02 36111557562 125.80 

Total     4724019.309 94178139727   
Source: own calculations 
 
Table VIII Risk premiums for homogeneous groups of women by age 

Women ΘB est n2011 E(Yj) D(Yj) 
RP/ 

person 

-30 0.000283 58338.00 330599.13 6610109197 6.10 

31-40 0.003829 69333.50 4852128.72 96671019718 76.58 

41-50 0.003168 42272.30 2677976.70 53389882568 68.18 

51+ 0.003662 20001.80 1464965.27 29192008818 78.83 

Total     9325669.82 1.85863E+11   
Source: own calculations 
 

For the calculation of risk premiums in homogeneous 
groups of insured persons by sex and age we used the formulas 
(20)-(24). Results we can see in tables VII and VIII. 

VI. CONCLUSION 
Bayesian estimation theory provides methods for 

permanently updated estimates of the event probability for 
each coming year in insurance company. Bayesian approach 
combine prior information that are known before collected of 
any data and information provided by the sample data, which 
are in our case number of concluded insurance contracts and 
number of claims in previous n years. Probabilities of the 
claims which are the subject of insurance contracts are 
necessary to know for insurance company especially when 
calculating premiums for next year.  

The insurance company can correctly determine premiums 
only if use correctly estimates probabilities of claims. This 
article is both theoretical and practical demonstration of 
permanently updated Bayesian estimates of event probability 
which in this case is critical illness. This procedure has of 
course general use and provides better estimates of 
probabilities as maximum likelihood method.  

The maximum likelihood estimate is assigned to period 
which has already expired, while Bayesian estimate of event 
probability is for next period. This is undoubtedly advantage 
for premium calculation. The possibility to express Bayesian 
estimate of binomial probability in the form of credibility 
formulas by expression (10) allow easy application of this 
theory in insurance practice.  

The weakest point of Bayesian estimation is the choice of 
parameters of prior distribution and the associated a priori 
estimate of the parameter. Article also presents an algorithm to 
improve the a priori estimates. 
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